A truncated dodecahedron is a three-dimensional Archimedean solid with 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.
See Also [ ]
Regular
t
0
{
5
,
3
}
{\displaystyle t_0 \{5,3\}}
Rectified
t
1
{
5
,
3
}
{\displaystyle t_1 \{5,3\}}
Birectified
t
2
{
5
,
3
}
{\displaystyle t_2 \{5,3\}}
Truncated
t
0
,
1
{
5
,
3
}
{\displaystyle t_{0,1} \{5,3\}}
Bitruncated
t
1
,
2
{
5
,
3
}
{\displaystyle t_{1,2} \{5,3\}}
Cantellated
t
0
,
2
{
5
,
3
}
{\displaystyle t_{0,2} \{5,3\}}
Cantitruncated
t
0
,
1
,
2
{
5
,
3
}
{\displaystyle t_{0,1,2} \{5,3\}}
Dodecahedron
Icosidodecahedron
Icosahedron
Truncated dodecahedron
Truncated icosahedron
Rhombicosidodecahedron
Great rhombicosidodecahedron
t
0
,
1
{
2
,
3
}
{\displaystyle {t}_{0,1} \{2,3\}}
t
0
,
1
{
3
,
3
}
{\displaystyle {t}_{0,1} \{3,3\}}
t
0
,
1
{
4
,
3
}
{\displaystyle {t}_{0,1} \{4,3\}}
t
0
,
1
{
5
,
3
}
{\displaystyle {t}_{0,1} \{5,3\}}
t
0
,
1
{
6
,
3
}
{\displaystyle {t}_{0,1} \{6,3\}}
t
0
,
1
{
7
,
3
}
{\displaystyle {t}_{0,1} \{7,3\}}
t
0
,
1
{
8
,
3
}
{\displaystyle {t}_{0,1} \{8,3\}}
...
t
0
,
1
{
∞
,
3
}
{\displaystyle {t}_{0,1} \{\infty,3\}}
t
0
,
1
{
π
i
λ
,
3
}
{\displaystyle {t}_{0,1} \{\frac{\pi i}{\lambda},3\}}
Triangular prism
Truncated tetrahedron
Truncated cube
Truncated dodecahedron
Truncated hexagonal tiling
Truncated order-3 heptagonal tiling
Truncated order-3 octagonal tiling
...
Truncated order-3 apeirogonal tiling
Truncated order-3 pseudogonal tiling