A pseudogonal dihedron is a degenerate hyperbolic tiling related to the apeirogonal dihedron composed of two pseudogons of the same symmetry that share their edges and vertices. Instead of being a regular Euclidean tiling like the apeirogonal dihedron, it is a regular hyperbolic tiling.
See Also [ ]
{
0
,
2
}
{\displaystyle \{0,2\}}
{
1
,
2
}
{\displaystyle \{1,2\}}
{
2
,
2
}
{\displaystyle \{2,2\}}
{
3
,
2
}
{\displaystyle \{3,2\}}
{
4
,
2
}
{\displaystyle \{4,2\}}
{
5
,
2
}
{\displaystyle \{5,2\}}
{
6
,
2
}
{\displaystyle \{6,2\}}
{
7
,
2
}
{\displaystyle \{7,2\}}
{
8
,
2
}
{\displaystyle \{8,2\}}
...
{
∞
,
2
}
{\displaystyle \{\infty,2\}}
{
π
i
λ
,
2
}
{\displaystyle \{\frac{\pi i}{\lambda},2\}}
Zerogonal dihedron
Monogonal dihedron
Digonal dihedron
Trigonal dihedron
Square dihedron
Pentagonal dihedron
Hexagonal dihedron
Heptagonal dihedron
Octagonal dihedron
...
Apeirogonal dihedron
Pseudogonal dihedron
{
π
i
λ
,
2
}
{\displaystyle \{\frac{\pi i}{\lambda},2\}}
{
π
i
λ
,
3
}
{\displaystyle \{\frac{\pi i}{\lambda},3\}}
{
π
i
λ
,
4
}
{\displaystyle \{\frac{\pi i}{\lambda},4\}}
{
π
i
λ
,
5
}
{\displaystyle \{\frac{\pi i}{\lambda},5\}}
{
π
i
λ
,
6
}
{\displaystyle \{\frac{\pi i}{\lambda},6\}}
{
π
i
λ
,
7
}
{\displaystyle \{\frac{\pi i}{\lambda}, 7\}}
{
π
i
λ
,
8
}
{\displaystyle \{\frac{\pi i}{\lambda}, 8\}}
...
{
π
i
λ
,
∞
}
{\displaystyle \{\frac{\pi i}{\lambda},\infty\}}
{
π
i
λ
1
,
π
i
λ
2
}
{\displaystyle \{\frac{\pi i}{\lambda_1},\frac{\pi i}{\lambda_2}\}}
Pseudogonal dihedron
Order-3 pseudogonal tiling
Order-4 pseudogonal tiling
Order-5 pseudogonal tiling
Order-6 pseudogonal tiling
Order-7 pseudogonal tiling
Order-8 pseudogonal tiling
...
Infinite-order pseudogonal tiling
Imaginary-order pseudogonal tiling