A point is a position, with a size equal to 0. This does not mean an entire region however. It is defined by Euclid as "that which has no part", which is an apt description - a point has no height, width, depth, or any other measure in any other dimension.
Furthermore, a point can also be thought of as a 'dimensionless' coordinate, meaning a coordinate without a definite numerical or algebraic value.
It is also the only zero dimensional shape, and any zero-dimensional space consists of a single point and nothing else. This means that it can be considered as a zero-dimensional space of infinite extent, in analogue with the plane.
A line can be thought of as consisting of an uncountably infinite amount of points placed directly adjacent to each other in the same direction.
Likewise, a plane can be thought of as consisting of an infinite amount of parallel lines that are infinitely close.
The point represents the idea of unity in many religions and ethnic groups.
Structure and Sections[]
Hypervolumes[]
Subfacets[]
- 1 null polytope (-1D)
- 1 point (0D)
Notations[]
- Toratopic notation:
- Tapertopic notation: 0
Related shapes[]
- Dual: Self-dual
- Vertex figure: Null polytope
See also[]
Dimensionality | Negative One | Zero | One | Two | Three | Four | Five | Six | Seven | Eight | Nine | Ten | Eleven | Twelve | Thirteen | Fourteen | Fifteen | Sixteen | Seventeen | ... | Aleph null |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Simplex
\(\{3^{n-1}\}\) |
Null polytope
\()(\) |
Point
\(()\) |
Line segment
\(\{\}\) |
Triangle
\(\{3\}\) |
Tetrahedron
\(\{3^2\}\) |
Pentachoron
\(\{3^3\}\) |
Hexateron
\(\{3^4\}\) |
Heptapeton
\(\{3^5\}\) |
Octaexon
\(\{3^6\}\) |
Enneazetton
\(\{3^7\}\) |
Decayotton
\(\{3^8\}\) |
Hendecaxennon
\(\{3^9\}\) |
Dodecadakon
\(\{3^{10}\}\) |
Tridecahendon
\(\{3^{11}\}\) |
Tetradecadokon
\(\{3^{12}\}\) |
Pentadecatradakon
\(\{3^{13}\}\) |
Hexadecatedakon
\(\{3^{14}\}\) |
Heptadecapedakon
\(\{3^{15}\}\) |
Octadecapedakon
\(\{3^{16}\}\) |
... | Omegasimplex |
Cross
\(\{3^{n-2},4\}\) |
Square
\(\{4\}\) |
Octahedron
\(\{3, 4\}\) |
Hexadecachoron
\(\{3^2, 4\}\) |
Pentacross
\(\{3^3, 4\}\) |
Hexacross
\(\{3^4, 4\}\) |
Heptacross
\(\{3^5, 4\}\) |
Octacross
\(\{3^6, 4\}\) |
Enneacross
\(\{3^7, 4\}\) |
Dekacross
\(\{3^8, 4\}\) |
Hendekacross
\(\{3^9, 4\}\) |
Dodekacross
\(\{3^{10}, 4\}\) |
Tridekacross
\(\{3^{11}, 4\}\) |
Tetradekacross
\(\{3^{12}, 4\}\) |
Pentadekacross
\(\{3^{13}, 4\}\) |
Hexadekacross
\(\{3^{14}, 4\}\) |
Heptadekacross
\(\{3^{15}, 4\}\) |
... | Omegacross | |||
Hydrotopes
\(\{3^{n-2}, 5\}\) |
Pentagon
\(\{5\}\) |
Icosahedron
\(\{3, 5\}\) |
Hexacosichoron
\(\{3^2, 5\}\) |
Order-5 pentachoric tetracomb
\(\{3^3, 5\}\) |
Order-5 hexateric pentacomb
\(\{3^4, 5\}\) |
... | |||||||||||||||
Hypercube
\(\{4, 3^{n-2}\}\) |
Square
\(\{4\}\) |
Cube
\(\{4, 3\}\) |
Tesseract
\(\{4, 3^2\}\) |
Penteract
\(\{4, 3^3\}\) |
Hexeract
\(\{4, 3^4\}\) |
Hepteract
\(\{4, 3^5\}\) |
Octeract
\(\{4, 3^6\}\) |
Enneract
\(\{4, 3^7\}\) |
Dekeract
\(\{4, 3^8\}\) |
Hendekeract
\(\{4, 3^9\}\) |
Dodekeract
\(\{4, 3^{10}\}\) |
Tridekeract
\(\{4, 3^{11}\}\) |
Tetradekeract
\(\{4, 3^{12}\}\) |
Pentadekeract
\(\{4, 3^{13}\}\) |
Hexadekeract
\(\{4, 3^{14}\}\) |
Heptadekeract
\(\{4, 3^{15}\}\) |
... | Omegeract | |||
Cosmotopes
\(\{5, 3^{n-2}\}\) |
Pentagon
\(\{5\}\) |
Dodecahedron
\(\{5, 3\}\) |
Hecatonicosachoron
\(\{5, 3^2\}\) |
Order-3 hecatonicosachoric tetracomb
\(\{5, 3^3\}\) |
Order-3-3 hecatonicosachoric pentacomb
\(\{5, 3^4\}\) |
... | |||||||||||||||
Hyperball
\(\mathbb B^n\) |
Disk
\(\mathbb B^2\) |
Ball
\(\mathbb B^3\) |
Gongol
\(\mathbb B^4\) |
Pentorb
\(\mathbb B^5\) |
Hexorb
\(\mathbb B^6\) |
Heptorb
\(\mathbb B^7\) |
Octorb
\(\mathbb B^8\) |
Enneorb
\(\mathbb B^9\) |
Dekorb
\(\mathbb B^{10}\) |
Hendekorb
\(\mathbb B^{11}\) |
Dodekorb
\(\mathbb B^{12}\) |
Tridekorb
\(\mathbb B^{13}\) |
Tetradekorb
\(\mathbb B^{14}\) |
Pentadekorb
\(\mathbb B^{15}\) |
Hexadekorb
\(\mathbb B^{16}\) |
Heptadekorb
\(\mathbb B^{17}\) |
... | Omegaball
\(\mathbb B^{\aleph_0}\) |