A monogonal dihedron is a 3-D polyhedron with two monogonal faces which share an edge and a vertex. In normal Euclidean space, it is degenerate, but can exist as a tiling of the sphere where each face makes up a hemisphere.
Structure and Sections [ ]
Hypervolumes [ ]
vertex count =
1
{\displaystyle 1}
edge length =
l
{\displaystyle l}
surface area =
0
{\displaystyle 0}
surcell volume =
0
{\displaystyle 0}
Subfacets [ ]
See Also [ ]
{
1
,
2
}
{\displaystyle \{1,2\}}
Monogonal dihedron
Regular
t
0
{
1
,
2
}
{\displaystyle t_0 \{1,2\}}
Rectified
t
1
{
1
,
2
}
{\displaystyle t_1 \{1,2\}}
Birectified
t
2
{
1
,
2
}
{\displaystyle t_2 \{1,2\}}
Truncated
t
0
,
1
{
1
,
2
}
{\displaystyle t_{0,1} \{1,2\}}
Bitruncated
t
1
,
2
{
1
,
2
}
{\displaystyle t_{1,2} \{1,2\}}
Cantellated
t
0
,
2
{
1
,
2
}
{\displaystyle t_{0,2} \{1,2\}}
Cantitruncated
t
0
,
1
,
2
{
1
,
2
}
{\displaystyle t_{0,1,2} \{1,2\}}
Monogonal dihedron
Monogonal dihedron
Monogonal hosohedron
Truncated monogonal dihedron
Monogonal prism
Monogonal prism
Digonal prism
{
0
,
2
}
{\displaystyle \{0,2\}}
{
1
,
2
}
{\displaystyle \{1,2\}}
{
2
,
2
}
{\displaystyle \{2,2\}}
{
3
,
2
}
{\displaystyle \{3,2\}}
{
4
,
2
}
{\displaystyle \{4,2\}}
{
5
,
2
}
{\displaystyle \{5,2\}}
{
6
,
2
}
{\displaystyle \{6,2\}}
{
7
,
2
}
{\displaystyle \{7,2\}}
{
8
,
2
}
{\displaystyle \{8,2\}}
...
{
∞
,
2
}
{\displaystyle \{\infty,2\}}
{
π
i
λ
,
2
}
{\displaystyle \{\frac{\pi i}{\lambda},2\}}
Zerogonal dihedron
Monogonal dihedron
Digonal dihedron
Trigonal dihedron
Square dihedron
Pentagonal dihedron
Hexagonal dihedron
Heptagonal dihedron
Octagonal dihedron
...
Apeirogonal dihedron
Pseudogonal dihedron