The infinite-order triangular tiling is a regular paracompact hyperbolic tiling formed from triangles joining infinitely many to a vertex .
All of the vertices of an infinite-order triangular tiling are ideal points. In the Poincaré disk model, a conformal projection of the hyperbolic plane to the unit disk , the ideal points are points located on the boundary circle of the disk.
See also [ ]
{
2
,
∞
}
{\displaystyle \{2,\infty\}}
{
3
,
∞
}
{\displaystyle \{3,\infty\}}
{
4
,
∞
}
{\displaystyle \{4,\infty\}}
{
5
,
∞
}
{\displaystyle \{5,\infty\}}
{
6
,
∞
}
{\displaystyle \{6,\infty\}}
{
7
,
∞
}
{\displaystyle \{7,\infty\}}
{
8
,
∞
}
{\displaystyle \{8,\infty\}}
...
{
∞
,
∞
}
{\displaystyle \{\infty,\infty\}}
{
π
i
λ
,
∞
}
{\displaystyle \{\frac{\pi i}{\lambda},\infty\}}
Apeirogonal hosohedron
Infinite-order triangular tiling
Infinite-order square tiling
Infinite-order pentagonal tiling
Infinite-order hexagonal tiling
Infinite-order heptagonal tiling
Infinite-order octagonal tiling
...
Infinite-order apeirogonal tiling
Infinite-order pseudogonal tiling
{
3
,
2
}
{\displaystyle \{3,2\}}
{
3
,
3
}
{\displaystyle \{3, 3\}}
{
3
,
4
}
{\displaystyle \{3, 4\}}
{
3
,
5
}
{\displaystyle \{3, 5\}}
{
3
,
6
}
{\displaystyle \{3,6\}}
{
3
,
7
}
{\displaystyle \{3,7\}}
{
3
,
8
}
{\displaystyle \{3,8\}}
...
{
3
,
∞
}
{\displaystyle \{3,\infty\}}
{
3
,
π
i
λ
}
{\displaystyle \{3,\frac{\pi i}{\lambda}\}}
Trigonal dihedron
Tetrahedron
Octahedron
Icosahedron
Triangular tiling
Order-7 triangular tiling
Order-8 triangular tiling
...
Infinite-order triangular tiling
Imaginary-order triangular tiling
Template:Variant Nav infty 3
Template:Variant Nav loop a33