An infinite-order pseudogonal tiling is a regular hyperbolic tiling constructed by joining an infinite amount of pseudogons of the same symmetry to a vertex .
See Also [ ]
{
2
,
∞
}
{\displaystyle \{2,\infty\}}
{
3
,
∞
}
{\displaystyle \{3,\infty\}}
{
4
,
∞
}
{\displaystyle \{4,\infty\}}
{
5
,
∞
}
{\displaystyle \{5,\infty\}}
{
6
,
∞
}
{\displaystyle \{6,\infty\}}
{
7
,
∞
}
{\displaystyle \{7,\infty\}}
{
8
,
∞
}
{\displaystyle \{8,\infty\}}
...
{
∞
,
∞
}
{\displaystyle \{\infty,\infty\}}
{
π
i
λ
,
∞
}
{\displaystyle \{\frac{\pi i}{\lambda},\infty\}}
Apeirogonal hosohedron
Infinite-order triangular tiling
Infinite-order square tiling
Infinite-order pentagonal tiling
Infinite-order hexagonal tiling
Infinite-order heptagonal tiling
Infinite-order octagonal tiling
...
Infinite-order apeirogonal tiling
Infinite-order pseudogonal tiling
{
π
i
λ
,
2
}
{\displaystyle \{\frac{\pi i}{\lambda},2\}}
{
π
i
λ
,
3
}
{\displaystyle \{\frac{\pi i}{\lambda},3\}}
{
π
i
λ
,
4
}
{\displaystyle \{\frac{\pi i}{\lambda},4\}}
{
π
i
λ
,
5
}
{\displaystyle \{\frac{\pi i}{\lambda},5\}}
{
π
i
λ
,
6
}
{\displaystyle \{\frac{\pi i}{\lambda},6\}}
{
π
i
λ
,
7
}
{\displaystyle \{\frac{\pi i}{\lambda}, 7\}}
{
π
i
λ
,
8
}
{\displaystyle \{\frac{\pi i}{\lambda}, 8\}}
...
{
π
i
λ
,
∞
}
{\displaystyle \{\frac{\pi i}{\lambda},\infty\}}
{
π
i
λ
1
,
π
i
λ
2
}
{\displaystyle \{\frac{\pi i}{\lambda_1},\frac{\pi i}{\lambda_2}\}}
Pseudogonal dihedron
Order-3 pseudogonal tiling
Order-4 pseudogonal tiling
Order-5 pseudogonal tiling
Order-6 pseudogonal tiling
Order-7 pseudogonal tiling
Order-8 pseudogonal tiling
...
Infinite-order pseudogonal tiling
Imaginary-order pseudogonal tiling