Glome
Vertex Count
'"`UNIQ--postMath-00000001-QINU`"'
Edge Length
'"`UNIQ--postMath-00000002-QINU`"'
Surface Area
'"`UNIQ--postMath-00000003-QINU`"'
Surcell Volume
'"`UNIQ--postMath-00000004-QINU`"'
A glome is a 3-dimensional surface produced by finding the set of all points that are an equal distance from another point in 4-dimensional space . Do to it being curved, it is often represented embedded in 4-dimensional space. A glome is the shape of the exterior of a gongol . It is the 3-dimensional hypersphere .
Embeddings [ ]
ℝ4 [ ]
A glome can be defined parametrically using the parameters
ψ
{\displaystyle \psi}
,
θ
{\displaystyle \theta}
and
ϕ
{\displaystyle \phi}
by
x
(
ψ
,
θ
,
ϕ
)
=
r
sin
ψ
sin
θ
sin
ϕ
y
(
ψ
,
θ
,
ϕ
)
=
r
sin
ψ
sin
θ
cos
ϕ
z
(
ψ
,
θ
,
ϕ
)
=
r
sin
ψ
cos
θ
w
(
ψ
,
θ
,
ϕ
)
=
r
cos
ψ
{\displaystyle {\begin{aligned}x(\psi ,\theta ,\phi )&=r\sin \psi \sin \theta \sin \phi \\y(\psi ,\theta ,\phi )&=r\sin \psi \sin \theta \cos \phi \\z(\psi ,\theta ,\phi )&=r\sin \psi \cos \theta \\w(\psi ,\theta ,\phi )&=r\cos \psi \\\end{aligned}}}
Where r is a constant defining the radius of the glome. Squaring all of these and adding them together gives the cartesian form of the glome with radius r,
x
2
+
y
2
+
z
2
+
w
2
−
r
2
=
0
{\displaystyle x^{2}+y^{2}+z^{2}+w^{2}-r^{2}=0}
ℍ1 [ ]
The glome can also be embedded in a quaternion coordinate space using the parameters
ψ
{\displaystyle \psi}
,
θ
{\displaystyle \theta}
and
ϕ
{\displaystyle \phi}
by
q
(
ψ
,
θ
,
ϕ
)
=
r
e
(
(
cos
θ
)
i
+
(
sin
θ
cos
ϕ
)
j
+
(
sin
θ
sin
ϕ
)
k
)
ψ
{\displaystyle {\begin{aligned}q(\psi ,\theta ,\phi )&=r{e}^{\left(\left(\cos \theta \right)i+\left(\sin \theta \cos \phi \right)j+\left(\sin \theta \sin \phi \right)k\right)\psi }\\\end{aligned}}}
See Also [ ]
Dimensionality
Negative One
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Ten
...
Aleph null
Hyperbolic space
H
n
{\displaystyle \mathbb H^{n}}
—
—
—
Hyperbolic plane
H
2
{\displaystyle \mathbb H^{2}}
Hyperbolic realm
H
3
{\displaystyle \mathbb H^{3}}
Hyperbolic flune
H
4
{\displaystyle \mathbb H^{4}}
Hyperbolic pentrealm
H
5
{\displaystyle \mathbb H^{5}}
Hyperbolic hexealm
H
6
{\displaystyle \mathbb H^{6}}
Hyperbolic heptealm
H
7
{\displaystyle \mathbb H^{7}}
Hyperbolic octealm
H
8
{\displaystyle \mathbb H^{8}}
Hyperbolic ennealm
H
9
{\displaystyle \mathbb H^{9}}
Hyperbolic decealm
H
10
{\displaystyle \mathbb H^{10}}
...
Hyperbolic omegealm
H
ℵ
0
{\displaystyle \mathbb H^{\aleph_0}}
Euclidean space
R
n
{\displaystyle \R^n}
Null polytope
∅
{\displaystyle \emptyset}
Point
R
0
{\displaystyle \mathbb R^{0}}
Euclidean line
R
1
{\displaystyle \mathbb R^{1}}
Euclidean plane
R
2
{\displaystyle \mathbb R^{2}}
Euclidean realm
R
3
{\displaystyle \mathbb R^{3}}
Euclidean flune
R
4
{\displaystyle \mathbb R^{4}}
Euclidean pentrealm
R
5
{\displaystyle \mathbb R^{5}}
Euclidean hexealm
R
6
{\displaystyle \mathbb R^{6}}
Euclidean heptealm
R
7
{\displaystyle \mathbb R^{7}}
Euclidean octealm
R
8
{\displaystyle \mathbb R^{8}}
Euclidean ennealm
R
9
{\displaystyle \mathbb R^{9}}
Euclidean decealm
R
10
{\displaystyle \mathbb R^{10}}
...
Euclidean omegealm
R
ℵ
0
{\displaystyle \mathbb R^{\aleph_0}}
Hypersphere
S
n
{\displaystyle \mathbb S^{n}}
Point pair
S
0
{\displaystyle \mathbb S^{0}}
Circle
S
1
{\displaystyle \mathbb S^{1}}
Sphere
S
2
{\displaystyle \mathbb S^{2}}
Glome
S
3
{\displaystyle \mathbb S^{3}}
Tetrasphere
S
4
{\displaystyle \mathbb S^{4}}
Pentasphere
S
5
{\displaystyle \mathbb S^{5}}
Hexasphere
S
6
{\displaystyle \mathbb S^{6}}
Heptasphere
S
7
{\displaystyle \mathbb S^{7}}
Octasphere
S
8
{\displaystyle \mathbb S^{8}}
Enneasphere
S
9
{\displaystyle \mathbb S^{9}}
Dekasphere
S
10
{\displaystyle \mathbb S^{10}}
...
Omegasphere
S
ℵ
0
{\displaystyle \mathbb S^{\aleph_0}}