Verse and Dimensions Wikia
Advertisement
Verse and Dimensions Wikia

The dodekacross is the 12-dimensional cross polytope. It is the dual of the dodekeract. Under the elemental naming scheme, it is called an aerohendon.

Structure and Sections

The dodekacross, as the 12-dimensional cross polytope, could be considered a bipyramid of the hendekacross.

See Also

Dimensionality Negative One Zero One Two Three Four Five Six Seven Eight Nine Ten Eleven Twelve Thirteen Fourteen Fifteen Sixteen ... Aleph null
Simplex

Null polytope


Point


Line segment


Triangle

Tetrahedron

Pentachoron

Hexateron

Heptapeton

Octaexon

Enneazetton

Decayotton

Hendecaxennon

Dodecadakon

Tridecahendon

Tetradecadokon

Pentadecatradakon

Hexadecatedakon

Heptadecapedakon

... Omegasimplex
Cross

Square

Octahedron

Hexadecachoron

Pentacross

Hexacross

Heptacross

Octacross

Enneacross

Dekacross

Hendekacross

Dodekacross

Tridekacross

Tetradekacross

Pentadekacross

Hexadekacross

... Omegacross
Hydrotopes

Pentagon

Icosahedron

Hexacosichoron

Order-5 pentachoric tetracomb

Order-5 hexateric pentacomb

...
Hypercube

Square

Cube

Tesseract

Penteract

Hexeract

Hepteract

Octeract

Enneract

Dekeract

Hendekeract

Dodekeract

Tridekeract

Tetradekeract

Pentadekeract

Hexadekeract

... Omegeract
Cosmotopes

Pentagon

Dodecahedron

Hecatonicosachoron

Order-3 hecatonicosachoric tetracomb

Order-3-3 hecatonicosachoric pentacomb

...
Hyperball

Disk

Ball

Gongol

Pentorb

Hexorb

Heptorb

Octorb

Enneorb

Dekorb

Hendekorb

Dodekorb

Tridekorb

Tetradekorb

Pentadekorb

Hexadekorb

... Omegaball

Advertisement