Verse and Dimensions Wikia
Verse and Dimensions Wikia

A cross-polytope or orthoplex is a shape constructed by repeatedly taking the bipyramid of a point. Each hypercube has four simplices of the lower dimension surrounding each peak (e.g. an octahedron has four triangles around each vertex, a hexadecachoron has three tetrahedra around each vertex).

DSchläfli SymbolCross
0Point
1Line segment
2Square
3Octahedron
4Hexadecachoron
5Pentacross
6Hexacross
7Heptacross
8Octacross
9Enneacross
10Dekacross

See Also[]

Dimensionality Negative One Zero One Two Three Four Five Six Seven Eight Nine Ten Eleven Twelve Thirteen Fourteen Fifteen Sixteen Seventeen ... Aleph null
Simplex

\(\{3^{n-1}\}\)

Null polytope

\()(\)
\(\emptyset\)

Point

\(()\)
\(\mathbb{B}^0\)

Line segment

\(\{\}\)
\(\mathbb{B}^1\)

Triangle

\(\{3\}\)

Tetrahedron

\(\{3^2\}\)

Pentachoron

\(\{3^3\}\)

Hexateron

\(\{3^4\}\)

Heptapeton

\(\{3^5\}\)

Octaexon

\(\{3^6\}\)

Enneazetton

\(\{3^7\}\)

Decayotton

\(\{3^8\}\)

Hendecaxennon

\(\{3^9\}\)

Dodecadakon

\(\{3^{10}\}\)

Tridecahendon

\(\{3^{11}\}\)

Tetradecadokon

\(\{3^{12}\}\)

Pentadecatradakon

\(\{3^{13}\}\)

Hexadecatedakon

\(\{3^{14}\}\)

Heptadecapedakon

\(\{3^{15}\}\)

Octadecapedakon

\(\{3^{16}\}\)

... Omegasimplex
Cross

\(\{3^{n-2},4\}\)

Square

\(\{4\}\)

Octahedron

\(\{3, 4\}\)

Hexadecachoron

\(\{3^2, 4\}\)

Pentacross

\(\{3^3, 4\}\)

Hexacross

\(\{3^4, 4\}\)

Heptacross

\(\{3^5, 4\}\)

Octacross

\(\{3^6, 4\}\)

Enneacross

\(\{3^7, 4\}\)

Dekacross

\(\{3^8, 4\}\)

Hendekacross

\(\{3^9, 4\}\)

Dodekacross

\(\{3^{10}, 4\}\)

Tridekacross

\(\{3^{11}, 4\}\)

Tetradekacross

\(\{3^{12}, 4\}\)

Pentadekacross

\(\{3^{13}, 4\}\)

Hexadekacross

\(\{3^{14}, 4\}\)

Heptadekacross

\(\{3^{15}, 4\}\)

... Omegacross
Hydrotopes

\(\{3^{n-2}, 5\}\)

Pentagon

\(\{5\}\)

Icosahedron

\(\{3, 5\}\)

Hexacosichoron

\(\{3^2, 5\}\)

Order-5 pentachoric tetracomb

\(\{3^3, 5\}\)

Order-5 hexateric pentacomb

\(\{3^4, 5\}\)

...
Hypercube

\(\{4, 3^{n-2}\}\)

Square

\(\{4\}\)

Cube

\(\{4, 3\}\)

Tesseract

\(\{4, 3^2\}\)

Penteract

\(\{4, 3^3\}\)

Hexeract

\(\{4, 3^4\}\)

Hepteract

\(\{4, 3^5\}\)

Octeract

\(\{4, 3^6\}\)

Enneract

\(\{4, 3^7\}\)

Dekeract

\(\{4, 3^8\}\)

Hendekeract

\(\{4, 3^9\}\)

Dodekeract

\(\{4, 3^{10}\}\)

Tridekeract

\(\{4, 3^{11}\}\)

Tetradekeract

\(\{4, 3^{12}\}\)

Pentadekeract

\(\{4, 3^{13}\}\)

Hexadekeract

\(\{4, 3^{14}\}\)

Heptadekeract

\(\{4, 3^{15}\}\)

... Omegeract
Cosmotopes

\(\{5, 3^{n-2}\}\)

Pentagon

\(\{5\}\)

Dodecahedron

\(\{5, 3\}\)

Hecatonicosachoron

\(\{5, 3^2\}\)

Order-3 hecatonicosachoric tetracomb

\(\{5, 3^3\}\)

Order-3-3 hecatonicosachoric pentacomb

\(\{5, 3^4\}\)

...
Hyperball

\(\mathbb B^n\)

Disk

\(\mathbb B^2\)

Ball

\(\mathbb B^3\)

Gongol

\(\mathbb B^4\)

Pentorb

\(\mathbb B^5\)

Hexorb

\(\mathbb B^6\)

Heptorb

\(\mathbb B^7\)

Octorb

\(\mathbb B^8\)

Enneorb

\(\mathbb B^9\)

Dekorb

\(\mathbb B^{10}\)

Hendekorb

\(\mathbb B^{11}\)

Dodekorb

\(\mathbb B^{12}\)

Tridekorb

\(\mathbb B^{13}\)

Tetradekorb

\(\mathbb B^{14}\)

Pentadekorb

\(\mathbb B^{15}\)

Hexadekorb

\(\mathbb B^{16}\)

Heptadekorb

\(\mathbb B^{17}\)

... Omegaball

\(\mathbb B^{\aleph_0}\)